
Creating Software

Concepts and Analogies

Beginner Programmers' Mistakes

Let’s talk about the mistakes beginner programmers usually make but let me make one thing

clear first. If you are a beginner programmer, this is not meant to make you feel bad about the

mistakes that you might be making but rather to make you aware of them, teach you to spot

signs of them, and remind you to avoid them.

I have made many of these mistakes in the past. It is how I learned to do better. Do not feel

bad if you are making these mistakes today. Just learn why they are classified here as

mistakes. I am happy to have formed coding habits to help me avoid them. You should do too.

The mistakes are not presented here in any particular order.

1. Writing Code Without Planning

High-quality content cannot be created easily. It requires careful thinking and research. High-

quality programs are no exception.

Writing quality programs is a process with a flow:

Think. Research. Plan. Write. Validate. Modify.

Unfortunately, there is no good acronym for this. You need to create a habit to always go

through the right amount of these activities.

One of the biggest mistakes beginner programmers make is to start writing code right away

without much thinking and researching. While this might work for a small stand-alone

application, it has a big, negative effect on larger applications.

Just like you need to think before saying anything you might regret, you need to think before

you code anything you might regret. Coding is also a way to communicate your thoughts.

When angry, count to 10 before you speak. If very angry, a hundred.

— Thomas Je�erson

Jefferson’s advice applies to coding as well:

When reviewing code, count to 10 before you refactor a line. If the code does

not have tests, a hundred.

— Samer Buna

Programming is mostly about reading previous code, researching what is needed and how it

fits with the current system, and planning the writing of features with small, testable

increments. The actual writing of lines of code is probably only 10% of the whole process.

Do not think about programming as writing lines of code. Programming is a logic-based

creativity that needs nurturing.

2. Planning Too Much Before Writing Code

Yes. Planning before jumping into code is a good thing, but even good things can hurt you

when you do too much of them. Too much healthy water might poison you.

Do not look for a perfect plan. That does not exist in the world of programming. Look for a

good-enough plan, something that you can use to get started. The truth is, your plan will

change, but what it was good for is to force you into some structure that leads to more clarity

in your code. Too much planning is simply a waste of your time.

Introduction

Beginner Programmers'

Mistakes

Software As a Profession

Professional Programming Tips

Writing Cooking Recipes!

Learning To Code

Variables

Callbacks and Promises

Errors and Exceptions

Asynchronous Programming

Reactive Programming and

Streams

Queues and Stacks

Pair Programming

Linting and Task Automation

Imperative vs Declarative

Programming

https://jscomplete.com/learn/pro-programmer/1pp-introduction
https://jscomplete.com/learn/pro-programmer/beginner-programmers-mistakes
https://jscomplete.com/learn/pro-programmer/software-profession
https://jscomplete.com/learn/pro-programmer/professional-tips
https://jscomplete.com/learn/pro-programmer/coding-real-life-analogies
https://jscomplete.com/learn/pro-programmer/19prx-learning-to-code
https://jscomplete.com/learn/pro-programmer/19prx-variables
https://jscomplete.com/learn/pro-programmer/19prx-callbacks-and-promises
https://jscomplete.com/learn/pro-programmer/19prx-errors-and-exceptions
https://jscomplete.com/learn/pro-programmer/19prx-asynchronous-programming
https://jscomplete.com/learn/pro-programmer/19prx-reactive-programming-and-streams
https://jscomplete.com/learn/pro-programmer/19prx-queues-and-stacks
https://jscomplete.com/learn/pro-programmer/19prx-pair-programming
https://jscomplete.com/learn/pro-programmer/19prx-linting-and-task-automation
https://jscomplete.com/learn/pro-programmer/19prx-imperative-vs-declarative-programming

I am only talking about planning small features. Planning all the features at once should simply

be outlawed! It is what we call the Waterfall Approach, which is a system linear plan with

distinct steps that are to be finished one by one. You can imagine how much planning that

approach needs. This is not the kind of planning I am talking about here. The waterfall

approach does not work. Anything complicated can only be implemented with agile

adaptations to reality.

Writing programs has to be a responsive activity. You will add features you would never have

thought of in a waterfall plan. You will remove features because of reasons you would never

have considered in a waterfall plan. You need to fix bugs and adapt to changes. You need to be

agile.

However, always plan your next few features. Do that very carefully because too little

planning and too much planning can both hurt the quality of your code. The quality of your

code is not something you can risk.

3. Underestimating the Importance of Code Quality

If you can only focus on one aspect of the code that you write, it should be its readability.

Unclear code is trash. It is not even recyclable.

Never underestimate the importance of code quality. Look at coding as a way to communicate

implementations. Your main job as a coder is to clearly communicate the implementations of

any solutions that you are working on.

One of my favorite quotes about programming is:

Always code as if the guy who ends up maintaining your code will be a violent

psychopath who knows where you live.

— John Woods

Brilliant advice, John!

Even the small things matter. For example, if you are not consistent with your indentation and

capitalization, you should simply lose your license to code.

Another simple thing is the use of long lines. Anything beyond 80 characters is much harder to

read. You might be tempted to place some long condition on the same line to keep an if-

statement block more visible. Do not do that. Just never go beyond the 80 character limit,

ever.

Many of the simple problems like these can be easily fixed with linting and formatting tools. In

JavaScript, we have two excellent tools that work perfectly together: ESLint and Prettier .

Do yourself a favor and always use them.

Here are a few more mistakes related to code quality:

Using many lines in a function or a file. You should always break long code into smaller

chunks that can be tested and managed separately.

Any function that has more than 10 lines is just too long.

Using double negatives. Please do not not not do that.

Using double negatives is just very not not wrong.

tHIS is

 WAY MORE important

than

 you think

Using short, generic, or type-based variable names. Give your variables descriptive and

non-ambiguous names.

There are only two hard things in Computer Science: cache invalidation and

naming things.

— Phil Karlton

Hard-coding primitive strings and numbers without descriptions. If you want to write logic

that depends on a primitive string or number, put that value in a constant and give it a

good name.

Using sloppy shortcuts and workarounds to avoid spending more time around simple

problems. Do not dance around problems. Face your realities.

Thinking that longer code is better. Shorter code is better in most cases. Only write longer

versions if they make the code more readable. For example, do not use clever one-liners

and nested ternary expressions just to keep the code shorter, but also do not intentionally

make the code longer when it does not need to be. Deleting unnecessary code is the best

thing you can do in any program.

Measuring programming progress by lines of code is like measuring aircraft

building progress by weight.

— Bill Gates

The excessive use of conditional logic. Most of what you think needs conditional logic can

be accomplished without it. Consider all the alternatives and pick exclusively based on

readability. Do not optimize for performance unless you can measure. Related: avoid yoda

conditions and assignments within conditionals.

4. Picking the First Solution

This is a subtle sign of a true newbie. They get presented with a problem, they find a solution,

and just run with it. They rush the implementation right away before thinking about the

complexities and potential failures of the identified solution.

While the first solution might be tempting, the good solutions are usually discovered once you

start questioning all the solutions that you find. If you cannot think of multiple solutions to a

problem, that is probably a sign that you do not completely understand the problem.

Your job as a professional programmer is not to find a solution to the problem. It is to find the

simplest solution to the problem. By “simple” I mean the solution has to work correctly and

perform adequately but still be simple enough to read, understand, and maintain.

There are two ways of constructing a software design. One way is to make it so

simple that there are obviously no de�ciencies, and the other way is to make it

so complicated that there are no obvious de�ciencies.

— C.A.R. Hoare

5. Not Quitting

Another mistake newbies make is sticking with the first solution even after they identify that

it might not be the best approach. This is probably psychologically related to the “not-

quitting” mentality. This is a good mentality to have in most activities, but it should not apply

to programming. In fact, when it comes to writing programs, the right mentality is fail early

and fail often.

const answerToLifeTheUniverseAndEverething = 42;

The minute you begin doubting a solution, you should consider throwing it away and re-

thinking the problem. This is true no matter how much you were invested in that solution.

Source control tools like GIT can help you branch off and experiment with many different

solutions. Leverage that. Do not be attached to code because of how much effort you put into

it. Bad code needs to be discarded.

6. Not Googling

There has been many instances where I wasted precious time trying to solve a problem when I

should have just researched it.

Unless you are using a bleeding-edge technology, when you run into a problem, chances are

someone else ran into the same problem and found a solution for it. Save yourself some time

and Google It First.

Sometimes, Googling will reveal that what you think is a problem is really not, and what you

need to do is not fix it but rather embrace it. Do not assume that you know everything needed

to pick a solution to a problem. Google will surprise you.

However, another sign of a newbie is copying and using code as is without understanding it.

While that code might correctly solve your problem, you should never use any line of code that

you do not fully understand. If you want to be a creative coder, never think that you know

what you’re doing.

The most dangerous thought that you can have as a creative person is to think

that you know what you’re doing.

— Bret Victor

7. Not Using Encapsulation

This point is not about using the object-oriented paradigm. The use of the encapsulation

concept is always useful. Not using encapsulation often leads to harder-to-maintain systems.

A feature should have only one place in the code that handles it. That is usually the

responsibility of a single object. That object should only reveal what is absolutely necessary

for other objects of the application to use it. This is not about secrecy but rather about the

concept of reducing dependencies between different parts of an application. Sticking with

these rules allows you to safely make changes in the internals of your classes, objects, and

functions without worrying about breaking things in a bigger scale.

Conceptual units of logic and state should get their own classes. By class, I mean a blueprint

template. This can be an actual Class object or a Function object. You might also identify it as a

Module or a Package.

Within a class of logic, self-contained pieces of tasks should get their own methods. Methods

should do one thing and do that thing well. Similar classes should use the same method

names.

Newbies usually do not have the instinct to start a new class for a conceptual unit and they

cannot identify what can be self-contained. If you see a Util class that has been used as a

dumping ground for many things that do not belong together, that is a sign of newbie code. If

you make a simple change and then discover that the change has a cascading effect and you

need to do many changes elsewhere, that is another sign of newbie code.

Before adding a method to a class or adding more responsibilities to a method, think and

question your instincts. You need time here. Do not skip or think that you will refactor that

later. Just do it right the first time.

The big idea here is that you want your code to have High Cohesion and Low Coupling, which is

just a fancy term that means keep related code together (in a class) and reduce the

dependencies between different classes.

8. Planning for the Unknown

It is often tempting to think beyond the solution that you are writing. All sort of what-ifs will

pop into your head with every line of code that you write. This is a good thing for testing edge

cases, but it just wrong to use as a driver for potential needs.

You need to identify which of these two main categories your what-ifs belong to. Do not write

code that you do not need today. Do not plan for the unknown future.

Writing a feature because you think that you might need it in the future is simply wrong. Do

not do it.

Always write the minimum amount of code that you need today for the solution that you are

implementing. Handle edge-cases, sure, but do not add edge-features.

Growth for the sake of growth is the ideology of the cancer cell.

— Edward Abbey

9. Not Using the Right Data Structures

When preparing for interviews, beginner programmers usually put too much focus on

algorithms. It is good to identify good algorithms and use them when needed, but memorizing

them will probably never attribute to your programming genius.

However, memorizing the strengths and weaknesses of the various data structures that you

can use in your language will make you a better developer.

Using the wrong data structure is a big and strongly-lit billboard sign that screams newbie

code here.

This is not a book to teach you about data structures but let me mention a couple of quick

examples:

Example: Using lists (arrays) instead of maps (objects)

The most common data structure mistake is probably the use of lists instead of maps to

manage a list of records. Yes, to manage a LIST of records you should use a MAP.

In JavaScript, for example, the most common list structure is an array and the most common

map structure is an object (there is also a map structure in modern JavaScript).

Using lists over maps is often wrong. While this point is really only true for large collections, I

would say just stick with it all the time. There are few specific cases where lists might be a

better option than maps and these cases are vanishing in modern languages. Just use maps.

The main reason this is important is because accessing elements in maps is a lot faster than

accessing elements in lists. Accessing elements is something that you will be doing often.

Lists used to be important because they guarantee the order of elements. However, modern

map structures can do that too.

Example: Not Using Stacks

When writing any code that requires some form of recursion, it is a lot easier to just use the

concept of recursion. However, it is usually hard to optimize recursive code, especially in

single-threaded environments.

 Library / Toggle Theme Prev Next

https://jscomplete.com/learn
https://jscomplete.com/learn/pro-programmer/1pp-introduction
https://jscomplete.com/learn/pro-programmer/software-profession

Optimizing recursive code also depends on what recursive functions return. For example,

optimizing a recursive function that returns two or more calls to itself is a lot harder than

optimizing a recursive function that simply returns a single call to itself.

What beginners often forget is that there is an alternative to recursion. You can just use a

Stack structure. Push function calls to a Stack yourself and start popping them out when you

are ready to traverse the calls back.

10. Making Existing Code Worse Than What They Started With

Imagine that you were given a messy room like this:

You were then asked to add an item to that room. Since it is a big mess already, you might be

tempted to put that item anywhere. You can be done with your task in a few seconds.

Do not do that with messy code. Do not make it worse! Always leave the code a bit cleaner

that when you started to work with it.

The right thing to do to the room above is to clean what is needed in order to place the new

item in the right place. For example, if the item is a piece of clothing that needs to be placed in

a closet, you need to clear a path to that closet. That is part of doing your task correctly.

Here are a few wrong practices that usually make the code a bigger mess than what it was

(not a complete list):

Duplicating code. If you copy/paste a code section to only change a line after that, you are

simply duplicating code and making a bigger mess. This is like introducing another chair

with a lower base in that messy room instead of investing in a new chair that is height-

adjustable. Always keep the concept of abstraction in your mind and use it when you can.

Not using configuration files. If you need to use a value that could potentially be different

on different environments or at different times, that value belongs in a configuration file.

If you need to use a value in multiple places in your code, that value belongs in a

configuration file. Just ask yourself this question all the time when you introduce a new

value to the code: does this value belong in a configuration file? The answer will most likely

be yes.

Using unnecessary conditional statements and temporary variables. Every if-statement is a

logic branch that needs to be at-least double tested. When you can avoid conditionals

without sacrificing readability, you should. The major problem with this is extending a

function with a branch logic instead of introducing another function. Every time you think

you need an if-statement or a new function variable you should ask yourself: am I changing

code in the right level or should I go a higher level?

On the topic of unnecessary if-statements, think about this code:

The isOdd function above has a few problems but can you see the most obvious one?

It uses an unnecessary if-statement. Here is an equivalent code:

11. Writing Comments About the Obvious Things

I avoid writing comments when I can. I think most comments can be replaced with better

named elements in your code.

For example, instead of the following code:

The same code can be written without comments like this:

Just using better names for functions and arguments simply makes most comments

unnecessary. Keep that in mind before writing any comment.

However, sometimes you are forced into situations where the only clarity you can add to the

code is via comments. This is when you should structure your comments to answer the

question of WHY this code rather that the question of WHAT is this code doing.

If you are strongly tempted to write a WHAT comment to clarify the code, please do not point

out the obvious. Here is an example of some newbie comments:

function isOdd(number) {

 if (number % 2 === 1) {

 return true;

 } else {

 return false;

 }

}

function isOdd(number) {

 return (number % 2 === 1);

};

// This function sums only odd numbers in an array

const sum = (val) => {

 return val.reduce((a, b) => {

 if (b % 2 === 1) { // if the current number is odd

 a+=b; // Add current number to accumulator

 }

 return a; // The accumulator

 }, 0);

};

const sumOddValues = (array) => {

 return array.reduce((accumulator, currentNumber) => {

 if (isOdd(currentNumber)) {

 return accumulator + currentNumber;

 }

 return accumulator;

 }, 0);

};

Do not be that programmer. Do not accept that code. Remove these comments if you have to

deal with them. If you happen to be employing programmers who write comments like the

above, go fire them, right now.

12. Not Writing Tests

I am going to keep this point simple. If you think you are an expert programmer and that

thinking gives you the confidence to write code without tests, you are a newbie in my book

(literally).

If you are not writing tests in code, you are most likely testing your program some other way,

manually. If you are building a web application, you will be refreshing and interacting with the

application after every few lines of code.

I do that too. There is nothing wrong about manually testing your code. However, you should

manually test your code to figure out how to automatically test it. If you successfully test an

interaction with your application, you should go back to your code editor and write code to

automatically perform the exact same interaction the next time you add more code to the

project.

You are a human being. You are going to forget to test all previously successful validations

after each code change. Make the computer do that for you!

If you can, start by guessing or designing your validations even before you write the code to

satisfy them. Testing-driven development (TDD) is not just some fancy hype. It positively

affects the way you think about your features and how to come up with a better design for

them.

TDD is not for everyone and it does not work well for every project, but if you can utilize it

(even in part) you should totally do so.

13. Assuming That If Things are Working then Things are Right

Take a look at this function that implements the sumOddValues feature. Is there anything

wrong with it?

The assertion passes. Life is good. Right, RIGHT?

// create a variable and initialize it to 0

let sum = 0;

// Loop over array

array.forEach(

 // For each number in the array

 (number) => {

 // Add the current number to the sum variable

 sum += number;

 }

);

const sumOddValues = (array) => {

 return array.reduce((accumulator, currentNumber) => {

 if (currentNumber % 2 === 1) {

 return accumulator + currentNumber;

 }

 return accumulator;

 });

};

console.assert(

 sumOddValues([1, 3, 5]) === 9

);

The problem with the code above is that it not complete. It correctly handles a few cases and

the assertion used happens to be one of these cases.

The function above has many problems beyond that. Let me go through a few of them:

Problem #1: There is no handling for empty input. What should happen when the function is

called without any arguments? Right now you get an error revealing the function’s

implementation when that happens:

That is usually a sign of bad code for two main reasons:

Users of your function should not encounter implementation details about it.

The error is not helpful for the user. Your function just did not work for them. However, if

the error was more clear about the usage problem, they would know that they used the

function incorrectly. For example, you can opt to have the function throw a user-defined

exception like this:

Maybe instead of throwing an error, you need to design your function to just ignore empty

input and return a sum of 0 for that. Regardless, something has to be done for this case.

Problem #2: There is no handling of invalid input. What should happen if the function is called

with a string, an integer, or an object value instead of an array?

Here is what the function would throw now:

Well, that is unfortunate because array.reduce is definitely a function!

Since we named the argument array , anything you call the function with (42 in the example

above) is labeled as array within the function. The error is basically saying that 42.reduce is

not a function.

You see how that error is confusing, right? Similar to Problem #1, this is happening because we

do not handle this specific case.

Maybe a more helpful error would have been: 42 is not an array, dude.

Problems #1 and #2 are sometimes referred to as edge-cases. Those are some common edge-

cases to plan for, but there are usually less obvious edge-cases that you need to think about as

well.

TypeError: Cannot read property 'reduce' of undefined.

TypeError: Cannot execute function for empty list.

sumOddValsue(42);

TypeError: array.reduce is not a function

Problem #3: No testing for edge-cases. Aside from the obvious ones, the function above does

not handle many other edge-cases very well. For example, what happens if we use negative

numbers?

Well, -13 is an odd number. Is this the behavior that you want this function to have? Should it

throw an error? Should it include the negative numbers in the sum? Or should it simply just

ignore negative numbers like it is doing now? Maybe it should have been named

sumPositiveOddNumbers .

You need to make a decision on this case. If you do not have a test case to document your

decision, maybe leave a short comment about it in code, a why-is-this-function-doing-the-

unexpected-here type of comment.

Problem #4: Not all valid cases are tested. Forget edge-cases, this function has a legitimate

and very simple case that it does not handle correctly:

The 2 above was included in sum when it should not have been.

If this surprises you, try to figure out why this problem is happening in the code above.

The solution is simple, reduce accepts a second argument to be used as the initial value for the

accumulator. If that argument is not provided (like in the code above), reduce will just use the

first value in the collection as the initial value for the accumulator. This is why the first even

value in the test above was included in the sum.

While you might have spotted this problem right away or when the code was written, this test

case that revealed it should have been included in the tests, in the first place, along with many

other test cases, like all-even numbers, a list that has 0 in it, and an empty list.

If you see minimal tests that do not handle many cases or ignore edge-cases, that is another

sign of newbie code.

14. Not Questioning Existing Code

Unless you are a super coder who always works solo, there is no doubt that you will encounter

some kind of stupid code in your life. Beginners will not recognize it and they usually assume

that it is good code since it seems to be working and it has been part of the code base for a

long time.

What is worse is that if the bad code uses bad practices, the beginner might be tempted to

repeat that bad practice elsewhere in the code base because they learned it from what they

thought was good code.

Some code looks bad but it might have a special condition around it that forced the developer

to write it that way. This is a good place for a detailed comment that teaches beginners about

that condition and why the code is written that way.

As a beginner, you should just assume that any code that you do not understand is a candidate

for being bad. Question it. Ask about it. git blame it!

If the author of that code is long gone or cannot remember it, research that code and try to

understand everything about it.

Only when you completely understand the code you get to form an opinion whether it is bad

or good. Do not assume anything before that.

sumOddValues([1, 3, 5, -13]) // => still 9

sumOddValues([2, 1, 3, 5]) // => 11

15. Obsessing About Best Practices

The term “best practices” is actually harmful. It implies that no further research is needed.

Here is the BEST practice ever. Do not question it! There are no best practices. There are

probably good practices today and for this programming language.

Some of what we previously identified as best practices in programming are labeled today as

bad practices.

You can always find better practices if you invest enough time. Stop worrying about best

practices and focus on what you can do best. The only valid best practices in coding are the

generic ones. For example, write the highest quality code than you possibly can.

Do not do something because of a quote you read somewhere or because you saw someone

else do it, or because someone said this is a best practice!

16. Obsessing About Performance

Premature optimization is the root of all evil (or at least most of it) in

programming

— Donald Knuth (1974)

While programming has significantly changed since Donald Knuth wrote the above statement,

I think it still holds valuable advice today.

The good rule to remember about this is: if you cannot measure the suspected efficiently

problem with the code, do not attempt to optimize it.

If you are optimizing even before writing the code, chances are you are doing it prematurely.

Of course there are some obvious optimizations that you should always consider before

introducing new code. For example, in Node.js, it is extremely important that you do not flood

the event loop or block the call stack. This an example of an early optimization that you should

always keep in mind. Ask yourself: Will the code I am thinking about block the call stack?

However, there is a more evil type of optimization that newbies usually do: Unnecessary

Optimization.

Any non-obvious optimization that is carried out on any existing code without measurements

is considered harmful and should be avoided. What you think is a performance gain might turn

out to be a source of new, unexpected bugs.

Do not waste your time optimizing unmeasured performance problems.

17. Not Targeting the End-user Experience

What is the easiest way to add a feature to an application? Look at it from the point of view of

yourself, or how it fits in the current User Interface. If the feature is to capture some kind of

input from the user, append it to that form that you already have. If that feature is to add a

link to a page, add it to that nested menu of links that you already have.

Do not be that developer. Be one of the professional developers who put themselves in their

end-users' shoes. They imagine what the end-users of this particular feature need and how

they might behave. They think about the ways to make the feature easy for the end-users to

find and use, not about the easy way to make the feature exist in the application somehow

without any thoughts about that feature’s discoverability and usability.

18. Not Picking the Right Tool for the Job

Everyone has their list of favorite tools to assist them in their programming-related activates.

Some tools are great and some are just bad but most tools are great for one particular thing

and not so great for many others.

A hammer is a great tool to drive a nail into a wall but it is the worst tool to use with a screw.

Do not use a hammer on a screw just because you “love” that hammer. Do not use a hammer

on a screw just because that is the most popular hammer on amazon with 5.0 user reviews.

Relying on a tool’s popularity rather than how much it fits the problem is a sign of a true

newbie.

One problem about this point is that you will probably not know the “better” tools for a

certain job. Within your current knowledge, a tool might be the best tool that you know of.

However, when compared to other options, it would not make the top list. You need to

familiarize yourself with the tools available to you and keep an open-mind about the new tools

that you can start using.

Some coders refuse to use new tools. They are comfortable with their existing tools and they

probably do not want to learn any new ones. I understand that and I can relate to it, but it is

simply wrong.

You can build a house with primitive tools and take your sweet time or you can invest some

time and money in new super-tools and build a better house much faster. Tools are continually

improving and you need to get comfortable learning about them and using them.

19. Not Understanding that Code Problems Will Cause Data Problems

An important aspect of a program is often the management of some form of data. The

program will be the interface to add new records, delete old ones, and modify others.

Even the smallest bugs in a program’s code will result in an unpredictable state for the data it

manages. This is especially true if all validations on the data are done entirely through the

same buggy program.

Beginners might immediately connect the dots when it comes to code-data relationship. They

might feel okay continuing to use some buggy code in production because feature X that is

not working is not super important. The problem is that buggy code might be continually

introducing data integrity problems that are not obvious at first.

What is worse is that shipping code that fixed the bugs without fixing the subtle data

problems that were caused by these bugs will just accumulate more data problems that takes

the case into the “unrecoverable-level” label.

How do you protect yourself from problems like these? You can simply use multiple layers of

data integrity validations. Do not rely on the single user interface. Create validations on front-

ends, back-ends, network communications, and databases. If that is not an option, then you

have to at-least use database-level constraints.

Familiarize yourself with database constraints and use all of them when you add columns and

tables to your database:

A NOT NULL constraint on a column means that null values will be rejected for that

column. If your application assumes the existence of a value for that field, its source should

be defined as not null in your database.

A UNIQUE constraint on a column means that the column cannot have duplicate values

across the whole table. For example, this is great for a username or email field on a Users

table.

A CHECK constraint is a custom expression that has to evaluate to true for the data to be

accepted. For example, if you have a normal percentage column whose values have to be

between 0 and 100, you can use a check constraint to enforce that.

A PRIMARY KEY constraint means that the column’s values are both not-null and unique

as well. You are probably using this one. Each table in the database should have a primary

key to identify its records.

A FOREIGN KEY constraint means that the column’s values have to match values in

another table column, which is usually a primary key.

Another newbie problem that is related to data integrity is the lack of thinking in terms of

transactions. If multiple operations need to change the same data source and they depend on

each other, they HAVE to be wrapped in a transaction that can be rolled back when one of

these operations fail.

20. Reinventing the Wheel

This is a tricky point. In programming, some wheels are simply worth reinventing.

Programming is not a well-defined domain. So many things change so fast and new

requirements are introduced faster than any team can handle.

For example, if you need a wheel that spins at different speeds based on the time of the day,

instead of customizing the wheel we all know and love, maybe we need to rethink it.

However, unless you actually need a wheel that is not used in its typical design, do not

reinvent it. Just use the damn wheel.

Do not spend your precious time researching which is the best wheel out there. Just do a

quick research and use what you find. Only replace wheels when you can clearly see that they

do not perform as advertised.

The cool thing about programming is that most wheels are free and open for you to see their

internal design. You can easily judge coding wheels by their internal design quality.

Use open-source wheels if you can! Open-source packages can be debugged and fixed easily.

They can also be replaced easily. In addition, it is easier to support them in-house.

However, if you need a wheel, do not buy a whole new car and put the car that you are

maintaining on top of that new car. Do not include a whole library just to use a function or two

out of it.

The best example about this is the lodash library in JavaScript. If you just need to shuffle an

array, just import the shuffle method. Do not import the whole freaking lodash.

21. Having the Wrong Attitude Towards Code Reviews

One sign of coding newbies is that they often look at code reviews as criticism. They do not

like them. They do not appreciate them. They even fear them.

This is just wrong. If you feel that way, you need to change this attitude right away. Look at

every code review as a learning opportunity. Welcome them and appreciate them. Learn from

them. And most importantly, thank your reviewers when they teach you something.

You are a forever code learner. You need to accept that. Most code reviews will teach you

something you did not know. Categorize them as a learning resource.

Sometimes, the reviewer will be wrong and it will be your turn to teach them something.

However, if that something was not obvious from just your code, then maybe your code needs

to be modified in that case. And if you need to teach your reviewer something anyway, just

know that teaching is one of the most rewarding activities that you can do as a programmer.

Look at me! I dedicated more than half of my working time to teaching. Do you think I do that

just for the money?

22. Not Using Source Control

Newbies sometimes underestimate the power of a good source/revision control system, and

by good I mean Git.

Source control is not about just pushing your changes for others to have and build on. It is a lot

bigger than that.

Source control is about clear history. Code will be questioned and the history of the progress

of that code will help answer some of the tough questions. This is why we care about commit

messages. They are yet another channel to communicate your implementations and using

them with small commits help future maintainers of your code figure out how the code

reached the state that it is in right now.

Commit often and commit early and for the love of consistency use present tense verbs in

your commit subject line. Be detailed with your messages but keep in mind that they should

be summaries. If you need more than a few lines in them, that is probably a sign that your

commit is simply too long. Rebase!

Do not include anything unnecessary in your commit messages. For example, do not list the

files that were added, modified, or deleted in your commit summaries. That list exists in the

commit object itself and can be easily displayed with some Git command arguments. It would

simply be noise in the summary message. Some teams like to have different summaries per

file changed and I see that as another sign of a commit that is too big.

Source control is also about discoverability. If you encounter a function and you start

questioning its need or design, you can find the commit that introduced it and see the context

of that function. Commits can even help you identify what code introduced a bug into the

program. Git even offers a binary search within commits to locate the single guilty commit

that introduced a bug.

Source control can also be leveraged in wonderful ways even before the changes become

official commits. The use of features like staging changes, patching selectively, resetting,

stashing, amending, applying, diffing, reversing and many others add some rich tools to your

coding flow. Understand them, learn them, use them, and appreciate them.

The less Git features you know, the more of a newbie you are in my book.

23. Over-Using Shared State

This, again, will not be a point about functional programming versus other paradigms. That is a

topic for another book.

This is just about the fact that shared state is a source of problems and should be avoided, if

possible. If that is not possible, the use of shared state should be kept to an absolute

minimum.

What beginner programmers might not realize is that every variable you define represents a

shared state. It holds data that can be changed by all elements in the same scope as that

variable. The more global the scope is, the worse the span of this shared state. Try to keep

new states contained in small scopes and make sure they do not leak upward.

The big problem with shared state starts to happen when multiple resources need to change

that state together in the same tick of the event loop (in event-loop-based environments).

Race conditions will happen.

Here is the thing: a newbie might be tempted to use a timer as a workaround for this shared

state race condition problem, especially if they have to deal with a data lock issue. That is a big

red flag. Do not do it. Watch for it, point it out in code reviews, and never accept it.

24. Having the Wrong Attitude About Errors

Errors are a good thing. They mean you are making progress. They mean you have an easy

follow-up change to make more progress.

Expert programmers love errors. Newbies hate them.

If seeing these wonderful little red error messages bother you, you need to change that

attitude. You need to look at them as helpers. You need to deal with them. You need to

leverage them to make progress.

Some errors need to be upgraded to exceptions. Exceptions are user-defined errors that you

need to plan for. Some errors need to be left alone. They need to crash the application and

make it exit.

25. Not Taking Breaks

You are a human and your brain needs breaks. Your body also needs breaks. You will often be

in the zone and forget to take breaks. I look at that as another sign of newbies. This is not

something you can compromise. Integrate something in your workflow that forces you to take

breaks. Take a lot of short breaks. Leave your chair and take a short walk and use it to think

about what you need to do next. Come back to the code with fresh eyes.

This has been a long read. You deserve a break.

Thanks for reading!

Writing high quality content takes a lot of time. If you found this helpful please consider

sponsoring the library. 🙏

Leave your email address below if you want to be noti�ed when we publish new

content. We will never send spam emails. You can unsubscribe any time.

Receive educational and content emails
(Short email articles about full-stack JavaScript)

Receive noti�cations and announcements emails

(When new content is published, for example)

Receive o�ers and events emails

(One-time workshops and other events and giveaways)

Join

Card number MM

$10

Send $10

Your Email Address

Yes No

Yes No

Yes No

https://twitter.com/intent/tweet?text=Beginner%20Programmers%27%20Mistakes%3A%20The%20Professional%20Programmer&url=https%3A%2F%2Fjscomplete.com%2Flearn%2Fpro-programmer%2Fbeginner-programmers-mistakes&via=agilelabs
mailto:?subject=Article%20on%20jsComplete%3A%20Beginner%20Programmers%27%20Mistakes%3A%20The%20Professional%20Programmer&body=Beginner%20Programmers%27%20Mistakes%3A%20The%20Professional%20Programmer%0A%0Ahttps%3A%2F%2Fjscomplete.com%2Flearn%2Fpro-programmer%2Fbeginner-programmers-mistakes
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fjscomplete.com%2Flearn%2Fpro-programmer%2Fbeginner-programmers-mistakes
https://linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fjscomplete.com%2Flearn%2Fpro-programmer%2Fbeginner-programmers-mistakes&title=Beginner%20Programmers%27%20Mistakes%3A%20The%20Professional%20Programmer

(https://twitter.com/intent/tweet?

20The%20Professional%20Programmer&url=https%3A%2F%2Fjscomplete.com%2Flearn%2Fpro-
er%2Fbeginner-programmers-mistakes&via=agilelabs)

(https://www.facebook.com/sharer/sharer.php?

u=https%3A%2F%2Fjscomplete.com%2Flearn%2Fpro-
programmer%2Fbeginner-programmers-mistakes)

(https://linkedin.co

mistakes&title=Begin

Any questions or feedback? Tweet us (https://twitter.com/agilelabs) or ask in the jsComplete

slack help channel (https://jscomplete.com/help).

Copyright 2022 © Agilelabs LLC :: Terms | Privacy

https://twitter.com/intent/tweet?text=Beginner%20Programmers%27%20Mistakes%3A%20The%20Professional%20Programmer&url=https%3A%2F%2Fjscomplete.com%2Flearn%2Fpro-programmer%2Fbeginner-programmers-mistakes&via=agilelabs
mailto:?subject=Article%20on%20jsComplete%3A%20Beginner%20Programmers%27%20Mistakes%3A%20The%20Professional%20Programmer&body=Beginner%20Programmers%27%20Mistakes%3A%20The%20Professional%20Programmer%0A%0Ahttps%3A%2F%2Fjscomplete.com%2Flearn%2Fpro-programmer%2Fbeginner-programmers-mistakes
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fjscomplete.com%2Flearn%2Fpro-programmer%2Fbeginner-programmers-mistakes
https://linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fjscomplete.com%2Flearn%2Fpro-programmer%2Fbeginner-programmers-mistakes&title=Beginner%20Programmers%27%20Mistakes%3A%20The%20Professional%20Programmer
https://twitter.com/agilelabs
https://jscomplete.com/help
https://jscomplete.com/terms
https://jscomplete.com/privacy

